Effect of the Maximum Density Ratio Between Liquid and Vapor on Cavitating Simulation
نویسندگان
چکیده
Corresponding Author: Ling Zhou Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China Email: [email protected] Abstract: The Filter-Based Model (FBM), which was built into CFX through CFX Expression Language (CEL) and a homogeneous cavitation model were employed to simulate cavitating flow around a 2D Clark-y hydrofoil. The effect of a maximum density ratio between liquid and vapor on sheet and cloud cavitating simulation was investigated. The results show that the maximum density ratio has a significant impact on cavitating simulation. The predicted cavitation with default value 1000 is underestimated compared with experiment. With the increasing of maximum density ratio, the interaction interface between liquid and vapor becomes unstable, accompanying the intermittent shedding of small-scale cavities. The cavity length and vapor volume fraction also increase. When the maximum density is increased to some degree, its effect on cavitation flow calculation becomes unobvious. A smaller maximum density ratio can ensure numerical stability but the result predicted with true density ratio is more accurate, so 20000 is recommended as the value of maximum density ratio in cavitation model to reach an optimum between accuracy and convergence.
منابع مشابه
Direct Calculations of Cavitating Flows in Fuel Delivery Pipe by the Space-Time CE/SE Method
In this paper, we report direct calculations of cavitating pipe flows by the method of Space-Time Conservation Element and Solution Element, or the CE/SE method for short. The tenet of the CE/SE method is treating space and time as one entity, and the calculation of flow properties is based on the local and global space-time flux conservation. As a contrast to the modern upwind schemes, no Riem...
متن کاملMULTI PHASE COMPUTATIONAL FLUID DYNAMICS MODELING OF CAVITATING FLOWS OVER AXISYMMETRIC HEAD-FORMS
In the present paper, partial cavitation over various head-forms was studied numerically to predict the shape of the cavity. Navier-Stokes equations in addition to an advection equation for vapor volume fraction were solved. Mass transfer between the phases was modeled by a sink term in vapor equation in the numerical analysis for different geometries in wide range of cavitation numbers. The r...
متن کاملLiquid-Vapor Density of Sulfur Hexaf luoride in the Critical Point
The thermodynamic properties of fluids can be predicted using the global equations of state. Among these thermodynamic properties of fluids, we choose the densities of the liquid and vapor phases. This paper considers the application of the crossover model to the vapor-liquid rectilinear diameter of sulfurhexafluoride. We also present a comparison of the crossover model equation with ...
متن کاملNumerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells
A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...
متن کاملEFFECT OF SUPERSOLIDUS LIQUID PHASE SINTERING ON THE MICROSTRUCTURE AND DENSIFICATION OF THE Al-Cu-Mg PREALLOYED POWDER
Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sinte...
متن کامل